Abstract
This paper examines the problem of assessing local influence on the optimal bandwidth estimation in kernel smoothing based on cross validation. The bandwidth for kernel smoothing plays an important role in the model fitting and is often estimated using the cross-validation criterion. Following the argument of the second-order approach to local influence suggested by Wu and Luo (1993), we develop a new diagnostic statistic to examine the local influence of the observations on the estimation of the optimal bandwidth, where the perturbation may belong to one of three schemes. These are the response perturbation, the perturbation in the explanatory variable, and the case-weight perturbation. The proposed diagnostic is nonparametric and is capable of identifying influential observations with strong influence on the bandwidth estimation. An example is presented to illustrate the application of the proposed diagnostic, and the usefulness of the nonparametric approach is illustrated in comparison with some other approaches to the assessment of local influence
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.