Abstract

ABSTRACTRidge penalized least-squares estimators has been suggested as an alternative to the minimum penalized sum of squares estimates in the presence of collinearity among the explanatory variables in semiparametric regression models (SPRMs). This paper studies the local influence of minor perturbations on the ridge estimates in the SPRM. The diagnostics under the perturbation of ridge penalized sum of squares, response variable, explanatory variables and ridge parameter are considered. Some local influence diagnostics are given. A Monte Carlo simulation study and a real example are used to illustrate the proposed perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.