Abstract
We propose a quasi-likelihood nonlinear model with random effects, which is a hybrid extension of quasi-likelihood nonlinear models and generalized linear mixed models. It includes a wide class of existing models as examples. A novel penalized quasi-likelihood estimation method is introduced. Based on the Laplace approximation and a penalized quasi-likelihood displacement, local influence of minor perturbations on the data set is investigated for the proposed model. Four concrete perturbation schemes are considered in the local influence analysis. The effectiveness of the proposed methodology is illustrated by some numerical examinations on a pharmacokinetics dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.