Abstract

Subgroups of patients with severe asthma showing marked increases in sputum eosinophils and/or neutrophils are insensitive to corticosteroids. Previous reports have shown that exogenous administration of an anti-inflammatory cytokine, interleukin (IL)-10 negatively regulated both eosinophilic and neutrophilic migration into tissues. The objective of this study was to elucidate whether intratracheal IL-10 administration suppresses asthmatic responses in a steroid-insensitive model of mice. Ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at 500 µg/animal four times. Dexamethasone (1 mg/kg, intraperitoneal) or IL-10 (25 ng/mouse, intratracheal) was administered during the multiple challenges. The number of leukocytes, expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-10 receptor in the lung, and the development of airway remodeling and hyperresponsiveness were evaluated after the fourth challenge. Consistent with our previous study, dexamethasone hardly suppressed the development of airway remodeling and hyperresponsiveness. Although intratracheal IL-10 administration did not affect the development of airway remodeling, the infiltration of eosinophils and neutrophils, and the development of airway hyperresponsiveness were significantly inhibited. Moreover, IL-10 administration significantly decreased the numbers of ICAM-1+ and VCAM-1+ pulmonary vascular endothelial cells, which express IL-10 receptor 1, even though neither production of eosinophilic nor neutrophilic cytokines in the lung was inhibited. Therefore, IL-10 can suppress eosinophil and neutrophil infiltration by inhibiting the proliferation of ICAM-1+ and VCAM-1+ pulmonary vascular endothelial cells, resulting in inhibition of airway hyperresponsiveness in steroid-insensitive asthmatic mice. IL-10 replacement therapy may be clinically useful for the treatment of steroid-insensitive asthma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.