Abstract
This study examines the effect of severe wind events on the mean and variance of housing price indices of six metropolitan statistical areas (MSA) that are vulnerable to hurricanes and/or tornadoes. The research focuses on three areas that experienced significant tornado activity (Fort Worth-Arlington, Nashville, and Oklahoma City) and three hurricane-prone areas (Corpus Christi, Miami, and Wilmington, NC). An econometric time series model that captures the housing market responses to severe windstorms is utilized. The model estimates changes in the local housing price index (HPI) as a function of several control variables as well as dichotomous variables that correspond to the tornadoes and hurricanes. As expected, the statistical findings indicate an immediate but short-lived decline in housing prices following a tornado or hurricane. Somewhat surprising is the result that the impact on the housing market is remarkably consistent whether the wind event was a hurricane or a tornado. Hurricanes and tornadoes are vastly different in terms of the point probabilities of a hit, the scope of the affected area and the lead time that supports last minute preparation to mitigate damage. It appears that the market response to destruction of real property does not distinguish between the types of wind event that produced the damage to the region. Results suggest that windstorms result in an immediate one-half to two percent reduction in total MSA housing value. This corresponds to a range of $34 million to $580 million in lost housing value. Estimates indicate some differences in how long market values continue to decline in the periods following the wind event; however, most of the decline occurs within four quarters after the windstorm. These differences can be attributed to the particular time series characteristics of the specific housing markets and their respective housing price indices. The market serves the purpose of integrating and normalizing the losses. In so doing the market provides a metric— a method for calibrating and comparing structural damage caused by different phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.