Abstract

Background: C-Pulse is a new, nonblood contacting device based on the concept of counter-pulsation that is designed for long-term implantation. However, there is a lack of comprehensive investigation of the pressure and velocity fields under the action of C-Pulse. Aim: In this paper, we aim to conduct a numerical simulation of the underlying mechanism of the device in order to analyze its performance and related undesirable issues. Materials & methods: A 3D finite element model is utilized to simulate the mechanism of the blood pumping. Results & conclusion: The simulation well reproduced the essential characteristics of the C-Pulse. Preliminary results were in a reasonable range while a couple of irregular flow patterns were identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.