Abstract

Heat transfer coefficients were measured by immersed probes in co- and counter-current G–L–S magnetically stabilized fluidized beds (MSFBs) using air, water and nickel-alloy particles as the gas, liquid and solid phases. Influences of major factors, including magnetic field intensity, superficial gas and liquid velocities, liquid viscosity and surface tension, on heat-transfer properties were studied experimentally, indicating that both co- and counter-current G–L–S MSFB can provide relatively uniform radial distribution of heat transfer coefficients under appropriate operation conditions, thus controlling operation temperature for highly exothermic multi-phase reaction systems. Two correlations were provided to estimate accurately heat transfer properties in both co- and counter-current G–L–S MSFB systems, with an average error of less than 10%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call