Abstract

Abstract This study presents local temperature and heat transfer coefficient distributions obtained experimentally on the internal surfaces of a rotating pin-finned brake rotor at realistic rotation speeds for braking (i.e., N = 100–300 rpm). To this end, the thermochromic liquid crystal technique in a rotating reference frame was employed. The results demonstrate that the bulk airflow within the ventilated channel of a rotating disk follows a predominantly backward sweeping inline-like path between the pin fins. Internal local heat transfer is distributed nonuniformly on both inboard and outboard surfaces, with twice higher average cooling from the outboard surface than the inboard surface: this possibly exacerbates the thermal stresses, which leads to thermal distortion of the rotor (i.e., coning).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.