Abstract
Influence of chevron nozzle on local heat transfer distribution over a flat plate impinged by incompressible jets is studied for Reynolds numbers of 28,000, 35,000 and 40,000. Ten different chevron nozzle configurations are studied with a pipe diameter of 10.8mm. Thin metal foil technique is used with IR camera to measure the wall temperature at nozzle to plate distances (z/d) from 1 to 10. An increase in the local Nusselt number by 26–38% compared to that with circular pipe is measured. It is observed that N10 nozzle (with number of chevron tips n=8 and chevron tip angle θ=10°) provides best heat transfer performance. A correlation for the average heat transfer is proposed in present study. A multiplication factor is also introduced to predict local Nusselt number for N10 nozzle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.