Abstract
Graphene-based materials are considered for the solution of the thermal management problem of current and next generation micro/nano-electronics with high heat generation densities. However, the hydrophobic nature of few-layer graphene makes passing heat to a fluid very challenging. We introduced an active and local manipulation of heat transfer between graphene and water using an applied, non-uniform electric field. When water undergoes electric field induced orientation polarization and liquid dielectrophoresis, a substantial increase in heat transfer develops due to a decrease in interfacial thermal resistance and increase in thermal conductivity. By using two locally embedded pin and plate electrodes of different sizes, we demonstrated a two-dimensional heat transfer control between two parallel few-layer graphene slabs. We obtained local heat transfer increase up to nine times at pin electrode region with an ultra-low Kapitza resistance through the studied non-uniform electric field strength range creating highly-ordered compressed water in the experimentally measured density limits. With this technique, heat can be (i) distributed from a smaller location to a larger section and/or (ii) collected to a smaller section from a larger region. Current results are important for hot spot cooling and/or heat focusing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.