Abstract

Finding the set of nearest neighbors for a query point of interest appears in a variety of algorithms for machine learning and pattern recognition. Examples include k nearest neighbor classification, information retrieval, case-based reasoning, manifold learning, and nonlinear dimensionality reduction. In this work, we propose a new approach for determining a distance metric from the data for finding such neighboring points. For a query point of interest, our approach learns a generalized quadratic distance (GQD) metric based on the statistical properties in a “small” neighborhood for the point of interest. The locally learned GQD metric captures information such as the density, curvature, and the intrinsic dimensionality for the points falling in this particular neighborhood. Unfortunately, learning the GQD parameters under such a local learning mechanism is a challenging problem with a high computational overhead. To address these challenges, we estimate the GQD parameters using the minimum volume covering ellipsoid (MVCE) for a set of points. The advantage of the MVCE is two-fold. First, the MVCE together with the local learning approach approximate the functionality of a well known robust estimator for covariance matrices. Second, computing the MVCE is a convex optimization problem which, in addition to having a unique global solution, can be efficiently solved using a first order optimization algorithm. We validate our metric learning approach on a large variety of datasets and show that the proposed metric has promising results when compared with five algorithms from the literature for supervised metric learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call