Abstract
In the era of big data, as for an important granular computing model, rough set model is an important tool for us to deal with data. As a kind of extension of classical rough sets, multigranulation rough sets have two forms, including optimistic and pessimistic cases. However, these two models have their shortcomings, one is too loose, and the other is too strict. To overcome the above shortcomings, based on the concept of local multigranulation tolerance rough sets in set-valued information systems, the local generalized multigranulation variable precision tolerance rough sets model by introducing characteristic function is established. Then the related properties are studied and proved. In addition, we define the concepts of lower approximate quality, inner and outer importance of attribute according to different granularity structures in set-valued decision information systems because different granularity structures have different effectives on the decision classes. Finally, the local attribute reduction algorithm and the global attribute reduction algorithm of local generalized multigranulation variable precision tolerance rough sets in set-valued decision information systems are given, and the effectiveness of the algorithms is proved by using UCI data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.