Abstract

Previous works have shown that fractional order derivative can give a better image description compared with conventional integral one in applications of edge detection, image segmentation, image restoration, and so on. Motivated by this conclusion, in this paper, we propose a novel local image descriptor, local fractional order derivative vector quantization pattern (fVQP), based on image local directional fractional order derivative feature vector and vector quantization method for face recognition. Compared with image integral order derivative information based local binary pattern (LBP), local derivative pattern (LDP) and local directional derivative pattern (LDDP), our fVQP image descriptor has the advantages of better image recognition performance and robust to noise. Extensive experimental results conducted on four benchmark face databases demonstrate the superior performance of our fVQP compared with existing state-of-the-art descriptors for face recognition in terms of recognition rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.