Abstract

In this paper, we develop a local Fourier analysis of multigrid methods based on block-structured relaxation schemes for stable and stabilized mixed finite-element discretizations of the Stokes equations, to analyze their convergence behavior. Three relaxation schemes are considered: distributive, Braess-Sarazin, and Uzawa relaxation. From this analysis, parameters that minimize the local Fourier analysis smoothing factor are proposed for the stabilized methods with distributive and Braess-Sarazin relaxation. Considering the failure of the local Fourier analysis smoothing factor in predicting the true two-grid convergence factor for the stable discretization, we numerically optimize the two-grid convergence predicted by local Fourier analysis in this case. We also compare the efficiency of the presented algorithms with variants using inexact solvers. Finally, some numerical experiments are presented to validate the two-grid and multigrid convergence factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call