Abstract
Construction of spatially extended, self-supporting structures requires a consideration of structural stability throughout the building sequence. For collective construction systems, where independent agents act with variable order and timing under decentralized control, ensuring stability is a particularly pronounced challenge. Previous research in this area has largely neglected considering stability during the building process. Physical forces present throughout a structure may be usable as a cue to inform agent actions as well as an indirect communication mechanism (stigmergy) to coordinate their behavior, as adding material leads to redistribution of forces which then informs the addition of further material. Here we consider in simulation a system of decentralized climbing robots capable of traversing and extending a two-dimensional truss structure, and explore the use of feedback based on force sensing as a way for the swarm to anticipate and prevent structural failures. We consider a scenario in which robots are tasked with building an unsupported cantilever across a gap, as for a bridge, where the goal is for the swarm to build any stable spanning structure rather than to construct a specific predetermined blueprint. We show that access to local force measurements enables robots to build cantilevers that span significantly farther than those built by robots without access to such information. This improvement is achieved by taking measures to maintain both strength and stability, where strength is ensured by paying attention to forces during locomotion to prevent joints from breaking, and stability is maintained by looking at how loads transfer to the ground to ensure against toppling. We show that swarms that take both kinds of forces into account have improved building performance, in both structured settings with flat ground and unpredictable environments with rough terrain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.