Abstract

AbstractThe case study of a 32‐atoms Si nanocrystallite (NC) embedded in a SiO2 matrix, both crystalline and amorphous, or free‐standing with different conditions of passivation and strain is analyzed through ab‐initio approaches. The Si32/SiO2 heterojunction shows a type I band offset highlighting a separation between the NC plus the interface and the matrix around. The consequence of this separation is the possibility to correctly reproduce the low energy electronic and optical properties of the composed system simply by studying the suspended NC plus interface oxygens with the appropriate strain. Moreover, through the definition of an optical absorption threshold we found that, beside the quantum confinement trend, the amorphization introduces an additional redshift that increases with increasing NC size, i.e. the gap tends faster to the bulk limit. Finally, the important changes in the calculated DFT‐RPA optical spectra upon inclusion of local fields point towards the need of a proper treatment of the optical response of the interface region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.