Abstract

In this study, the author discusses a Pareto strategy implemented via state and static output feedback for a class of weakly coupled large-scale discrete-time stochastic systems with state- and control-dependent noise. The asymptotic structure along with the uniqueness and positive semi-definiteness of the solutions of cross-coupled non-linear matrix equations (CNMEs) is newly established via the implicit function theorem. The main contribution of this study is the proposal of a parameter-independent local state and static output feedback Pareto strategy. Moreover, a computational approach for solving the CNMEs is also considered if the information about the small parameter is available. Particularly, a new iterative algorithm based on the linear matrix inequality is established to design a Pareto strategy. Finally, in order to demonstrate the effectiveness of the proposed design method, a numerical example is provided for practical aircraft control problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.