Abstract
Feature selection has improved the performance of text clustering. Global feature selection tries to identify a single subset of features which are relevant to all clusters. However, the clustering process might be improved by considering different subsets of features for locally describing each cluster. In this work, we introduce the method ZOOM-IN to perform local feature selection for partitional hierarchical clustering of text collections. The proposed method explores the diversity of clusters generated by the hierarchical algorithm, selecting a variable number of features according to the size of the clusters. Experiments were conducted on Reuters collection, by evaluating the bisecting K-means algorithm with both global and local approaches to feature selection. The results of the experiments showed an improvement in clustering performance with the use of the proposed local method.KeywordsFeature SelectionLocal ApproachDocument FrequencyPartitional AlgorithmHierarchical AlgorithmThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.