Abstract

The present study investigated the relationship between local fat percentage (SKfat) and muscle quality (MQ) estimated by a new hand-held electrical impedance myography (hEIM) device or derived from ultrasound and strength assessments. The right anterior thigh of 90 healthy participants (mean ± SD; age=22.9 ± 2.9 years; 45 men: BMI = 23.9 ± 2.4 kgm−2; 45 women: BMI = 21.1 ± 1.9 kgm−2) was scanned by hEIM and ultrasound. Correlations between SKfat, local subcutaneous fat (SUBfat), and echo intensity (EIus) were explored. Correlations between MQ, EIus, quadriceps femoris anatomical cross-sectional area (ACSAQF), knee extensors maximum voluntary isometric torque (T), T/ACSAQF, EIus/SUBfat, and ACSAQF/SUBfat were also assessed. SKfat correlated with SUBfat (r = 0.88; p < 0.001) and EIus (r = 0.64; p < 0.001). MQ correlated with EIus (r = −0.66; p < 0.001), ACSAQF (r = 0.37; p < 0.001), EIus/SUBfat (r = 0.37; p < 0.001), and ACSAQF/SUBfat (r = 0.81; p < 0.001). Multiple regression analysis showed that SUBfat, EIus, and sex explained 86% of SKfat variance, whereas ACSAQF/SUBfat, sex and EIus explained 75% of MQ variance. In conclusion, high hEIM local fat percentage relates to greater subcutaneous fat and intramuscular non-contractile tissue content. High hEIM muscle quality relates to greater muscle-size:subcutaneous-fat ratio and contractile tissue content. Sex influences the prediction of both parameters. This hEIM device seems to be useful to estimate local thigh composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call