Abstract
Muscle regeneration following injury is characterized by myonecrosis accompanied by local inflammation, activation of satellite cells, and repair of injured fibers. The resolution of the inflammatory response is necessary to proceed toward muscle repair, since persistence of inflammation often renders the damaged muscle incapable of sustaining efficient muscle regeneration. Here, we show that local expression of a muscle-restricted insulin-like growth factor (IGF)-1 (mIGF-1) transgene accelerates the regenerative process of injured skeletal muscle, modulating the inflammatory response, and limiting fibrosis. At the molecular level, mIGF-1 expression significantly down-regulated proinflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta, and modulated the expression of CC chemokines involved in the recruitment of monocytes/macrophages. Analysis of the underlying molecular mechanisms revealed that mIGF-1 expression modulated key players of inflammatory response, such as macrophage migration inhibitory factor (MIF), high mobility group protein-1 (HMGB1), and transcription NF-kappaB. The rapid restoration of injured mIGF-1 transgenic muscle was also associated with connective tissue remodeling and a rapid recovery of functional properties. By modulating the inflammatory response and reducing fibrosis, supplemental mIGF-1 creates a qualitatively different environment for sustaining more efficient muscle regeneration and repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.