Abstract
A sufficient condition for the existence of an absolutely continuous solution for a sweeping process is given by the absolute continuity, in a definite sense, of the multivalued mapping which generates the process. This property is described in terms of the Hausdorff distance between values of the multivalued mapping. However, there exist multivalued mappings for which the Hausdorff distance between those values is infinite; for instance, mappings which take hyperplanes as values. For such mappings absolute continuity cannot be described in terms of the Hausdorff distance. In this paper we study conditions which provide local absolute continuity of a multivalued mapping. By using these conditions we prove an existence theorem for an absolutely continuous solution of a sweeping process. We apply the results obtained to the study of sweeping processes with nonconvex and with convexified perturbations. For such sweeping processes we prove an existence theorem for solutions and a relaxation theorem. Bibliography: 13 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.