Abstract
In this paper we prove the local existence and uniqueness of solutions for a class of stochastic fractional partial differential equations driven by multiplicative noise. We also establish that for this class of equations adding linear multiplicative noise provides a regularizing effect: the solutions will not blow up with high probability if the initial data is sufficiently small, or if the noise coefficient is sufficiently large. As applications our main results are applied to various types of SPDE such as stochastic reaction–diffusion equations, stochastic fractional Burgers equation, stochastic fractional Navier–Stokes equation, stochastic quasi-geostrophic equations and stochastic surface growth PDE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.