Abstract

We study the minimum energy clusters (MEC) above the ground state for the 3-d Edwards-Anderson Ising spin glass in a magnetic field. For fields B below 0.4, we find that the field has almost no effect on the excitations that we can probe, of volume V <= 64. As found previously for B=0, their energies decrease with V, and their magnetization remains very small (even slightly negative). For larger fields, both the MEC energy and magnetization grow with V, as expected in a paramagnetic phase. However, all results appear to scale as BV (instead of the B sqrt(V) expected from droplet arguments), suggesting that the spin glass phase is destroyed by any small field. Finally, the geometry of the MEC is completely insensitive to the field, giving further credence that they are lattice animals, in the presence or the absence of a field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.