Abstract

The paper consists of two parts. In the first part of the paper, we proposed a procedure to estimate local errors of low order methods applied to solve initial value problems in ordinary differential equations (ODEs) and index-1 differential-algebraic equations (DAEs). Based on the idea of Defect Correction we developed local error estimates for the case when the problem data is only moderately smooth, which is typically the case in stochastic differential equations. In this second part, we will consider the estimation of local errors in context of mean-square convergent methods for stochastic differential equations (SDEs) with small noise and index-1 stochastic differential-algebraic equations (SDAEs). Numerical experiments illustrate the performance of the mesh adaptation based on the local error estimation developed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.