Abstract

Stem cells exhibit unique properties and hold high therapeutic promise, but factors influencing their differentiation after transplantation need to be recognized and defined for this promise to be fully met. Here, we demonstrate that endogenous colony-forming unit spleen (CFU-S) colonies are not generated in lethally irradiated mice transplanted with neural stem cells obtained from brain tissue of syngeneic donors. We investigated the proportion of transplanted neural stem cells that contributed to hematopoietic reconstitution and compared the distribution of transplanted cells in nonsplenectomized to that of splenectomized mice following sublethal whole-body irradiation. We also used clonogenic assays, colony assays, and histochemical analyses to explore conditions under which transplanted, beta-galactosidase-tagged neural stem cells underwent hematopoietic differentiation. Our results suggest that neural stem cells do undergo extramedullary hematopoiesis, even while no endogenous hematopoietic colonies develop in the spleen. Furthermore, we found that neural stem cells effectively colonized the bone marrow of splectomized recipients. We conclude that the hematopoietic differentiation of neural stem cells is highly dependent on the extramedullary environment. We also conclude that the bone marrow does not provide an environment supportive of hematopoietic differentiation by neural stem cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.