Abstract
The local binding and migration behavior of the proton defect in cubic yttria-stabilized zirconia (YSZ) is studied by first-principles calculations and muon-spin spectroscopy (μSR) measurements. The calculations are based on density-functional theory (DFT) supplemented with a hybrid-functional approach with the proton defect embedded in quasi-random supercells of 10.3 mol% yttria content, where the yttrium–zirconium substitutional defects are charge compensated by oxygen vacancies. Representative migration pathways for the proton comprising both transfer and bond reorientation modes are analysed and linked to the underlying microstructure of the YSZ lattice. The μSR data show the evolution of the diamagnetic fraction corresponding to the muon-isotope analogue with an activation energy of diffusion equal to 0.17 eV. Comparisons between the calculations and the experiment allow an assessment of the character of the short-range migration of the proton particle in cubic YSZ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.