Abstract

The ability to coordinate and confine enzymes presents an opportunity to affect their performance and to create chemically active materials. Recent studies show that polymers and biopolymers can be used to scaffold enzymes, and that can lead to the modulated biocatalytic efficiency. Here, we investigated the role of microenvironments on enzyme activity using a well-defined molecular scaffold. An enzyme, glucose oxidase (GOx), was positioned at different locations of a three-dimensional (3D) octahedral DNA scaffold (OS), allowing the enzyme's polyanionic environments to be altered. Using electrical sensing, based on a bipolar junction transistor, we measured directly and in real-time the enzyme's proton generation at these different microenvironments. We found a 200% enhancement of immobilized enzyme over free GOx and about a 30% increase in catalytic rates when the enzyme was moved on the same molecular scaffold to a microenvironment with a higher local concentration of polyanions, which suggests a role of local pH on the enzymatic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.