Abstract

This paper addresses the estimation of local entropy generation rate for diabatic saturated two-phase flow of a pure fluid. Two different approaches have been adopted for this thermodynamic characterization: the separated flow model using the classical vapor flow quality, and the mixture model, using the thermodynamic vapor quality. Based on these two models, two distinct expressions for the local entropy generation have been proposed. The analysis explicitly shows the contribution of heat transfer and pressure drop respectively to the local entropy generation. The contribution due to phase-change process is also determined using the mixture model. The developed formulation is applied to analyze the thermodynamic performance of enhanced heat transfer tubes under different conditions. It is shown that enhanced tubes may be a relevant solution for reducing entropy generation at low mass velocities whereas smooth tubes remain the best solution at higher ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.