Abstract

This study is based on a numerical analysis of water vapour absorption in a laminar, gravity driven, viscous, incompressible liquid film of LiBr-H2O solution, flowing over a horizontal cooled tube. The hydrodynamic description is based on Nusselt boundary layer assumptions. A local entropy generation calculation can be performed referring to velocity, temperature and concentration fields. From a general form of volumetric entropy generation, a suitable expression for the absorption process has been obtained and different irreversibility sources have been highlighted. The impact of each term (fluid friction, heat transfer, mass transfer and their coupling effects) has been locally examined. Results have been explored for different tube radii, wall temperatures and operative conditions (representing both chiller and heat transformer configurations), in order to characterise the process from a second law point of view and establish a criterion for the optimisation of the absorber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.