Abstract

We study entanglement in the Hatsugai-Kohmoto model, which exhibits a continuous interaction-driven Mott transition. By virtue of the all-to-all nature of its center-of-mass conserving interactions, the model lacks dynamical spectral weight transfer, which is the key to intractability of the Hubbard model for $d>1$. In order to maintain a non-trivial Mott-like electron propagator, SU(2) symmetry is preserved in the Hamiltonian, leading to a ground state that is mixed on both sides of the phase transition. Because of this mixture, even the metal in this model is unentangled between any pair of sites, unlike free fermions whose ground state carries a filling-dependent site-site entanglement. We focus on the scaling behavior of the one- and two-site entropies $s_1$ and $s_2$, as well as the entropy density $s$, of the ground state near the Mott transition. At low temperatures in the two-dimensional Hubbard model, it was observed numerically (Walsh et al., 2018, arXiv:1807.10409) that $s_1$ and $s$ increase continuously into the metal, across a first-order Mott transition. In the Hatsugai-Kohmoto model, $s_1$ acquires the constant value $\ln4$ even at the Mott transition. The ground state's non-trivial entanglement structure is manifest in $s_2$ and $s$ which decrease into the metal, and thereby act as sharp signals of the Mott transition in any dimension. Specifically, we find that in one dimension, $s_2$ and $s$ exhibit kinks at the transition while in $d=2$, only $s$ exhibits a kink.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.