Abstract

We use numerical linked cluster expansions (NLC) and exact diagonalization to study confinement transitions out of the quantum spin liquid phase in the pyrochlore-lattice Ising antiferromagnet with random transverse fields. We calculate entanglement entropies associated with local regions defined by single tetrahedron to observe these transitions. The randomness-induced confinement transition is marked by a sharp reduction in the local entanglement and a concomitant increase in Ising correlations. In NLC, it is studied through the destruction of loop resonances due to random transverse-fields. The confining phase is characterized by a distribution of local entanglement entropies, which persists to large random fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.