Abstract

Statistical properties of the subgrid-scale stress tensor, the local energy flux and filtered velocity gradients are analysed in numerical simulations of forced three-dimensional homogeneous turbulence. High Reynolds numbers are achieved by using hyperviscous dissipation. It is found that in the inertial range the subgrid-scale stress tensor and the local energy flux allow simple parametrization based on a tensor eddy viscosity. This parametrization underlines the role that negative skewness of filtered velocity gradients plays in the local energy transfer. It is found that the local energy flux only weakly correlates with the locally averaged energy dissipation rate. This fact reflects basic difficulties of large-eddy simulations of turbulence, namely the possibility of predicting the locally averaged energy dissipation rate through inertial-range quantities such as the local energy flux is limited. Statistical properties of subgrid-scale velocity gradients are systematically studied in an attempt to reveal the mechanism of local energy transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.