Abstract

The concept of local extended exergy is here applied to an idealized, dry, and reversible-adiabatic cyclone development. The extended exergy as well as the kinetic energy are decomposed into a mean part, defined by a zonal average, and into a perturbation from the mean. The resulting local energy evolution equations provide an extension of the well-known Lorenz-type available energy equations. A term in the baroclinic conversion rate, connected with static stability anomalies, which is not usually considered, is of significance even in this idealized case study and contributes significantly to the nonlinear equilibration of the baroclinic wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.