Abstract

Electronic structure calculations frequently invoke the supercell approximation and solve for electrostatic potentials within periodic boundary conditions. For systems that are electronically charged, or contain dipole (or higher) moments, this artifice introduces spurious potentials due to interactions between the system and multipole moments of its periodic images in aperiodic directions. I describe a method to handle properly the multipole moments of the electron density in electronic structure calculations using supercells. The density is divided into two pieces. A model local density is constructed to match multipole moments of the full density. The potential from this piece is obtained treating this density as isolated. With the density of this local-moment countercharge removed from the full density, the remainder density no longer contains moments with long-range potentials, and its electrostatic potential can be evaluated accurately using periodic boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.