Abstract
The local electronic structure of N atoms in Ga ( In ) AsN diluted alloys ( N concentration of 3%) is determined by soft-X-ray emission and absorption spectroscopies as element specific probes. The experimental spectra reflect the local 2p orbital-projected density-of-states of N impurities, the main recombination centers in Ga ( In ) AsN , which appears to deviate dramatically from crystalline GaN in both valence and conduction bands. In particular, we observe a N local charge transfer from the valence band maximum to deeper valence states, which fundamentally limits the optical efficiency of Ga ( In ) AsN , unless different N local environments are formed. The incorporation of In in large concentrations forms In -rich N local environments such as In 4 N , which become the main recombination centers in Ga ( In ) AsN due to a local decrease of the band gap. A k-conserving process of resonant inelastic X-ray scattering is discovered, which allows probing of the k-character of valence and conduction states despite the random alloy nature of Ga ( In ) AsN .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.