Abstract

The local electronic structure and magnetic properties of diluted magnetic semiconductor (Ga,Cr)N have been studied by using discrete variational method (DVM) based on density functional theory. The magnetic moments per Cr atom vary significantly with Cr concentration, and the trend of variation is in agreement with that of the experiment. The coupling between Cr atoms in the system with two Cr atoms considered is found to be ferromagnetic, and the magnetic moment per Cr atom is similar to the case in which only one Cr atom is considered in the same doping concentration. For all doping concentrations, the coupling between Cr and the nearest neighbor N is found to be antiferromagnetic, and the Cr 3d states hybridize strongly with N 2p states, which are in agreement with the band calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.