Abstract

Scanning tunnelling microscopy and current imaging tunnelling spectroscopy were used to observe electronic structure of the edges of monolayer graphite film deposited on the Ir(1 1 1) surface. The electronic structure derived from the tunnelling spectra revealed peak in electron local density of states very close to the Fermi level. This electronic state was interpreted in terms of localised edge state caused by the topology of the π electrons networks typical for the zig-zag edges. The observed maximum of local density of states at about 0.2 eV above the Fermi level was ascribed to the presence of resonant state caused by the appearance of disclinations centres in the vicinity of the graphite edges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call