Abstract

ABSTRACTThe local electromechanical properties of relaxor 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (PMN-PT) films are investigated by Scanning Force Microscopy (SFM) in a piezoelectric contact mode. The domain contrast is observed only in some grains (∼20 % of the entire surface), which showed clear ferroelectric behavior. Thus on the microscopic level the material behaves as a composite with ferroelectric regions embedded in the non-polar matrix. This was attributed to the relaxor-to-ferroelectric phase transition induced by the internal bias field. The local hysteresis loops are found to depend on the size of the grains. A distinct correlation between the values of the effective piezoelectric coefficients, deffi and the size of the respective grains is observed. Small grains exhibit slim piezoelectric hysteresis loops with low remanent deff while relatively strong piezoelectric activity is characteristic of larger grains. In addition, large grains exhibit longer relaxation time after poling with an effective time constant increasing with the grain size. The nature of size effect is discussed taking in terms of dynamics of nanopolar clusters and SFM instrumentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.