Abstract
75As and 31P NMR studies are performed in PrCoAsO and NdCoPO respectively. The Knight shift data in PrCoAsO indicate the presence of an antiferromagnetic interaction between the 4f moments along the c axis in the ferromagnetic state of Co 3d moments. We propose a possible spin structure in this system. The 75As quadrupolar coupling constant, νQ, increases continuously with decrease of temperature and is found to vary linearly with the intrinsic spin susceptibility, Kiso. This indicates the possibility of the presence of a coupling between charge density and spin density fluctuations. Further, the 31P NMR Knight shift and spin–lattice relaxation rate (1/T1) in the paramagnetic state of NdCoPO indicate that the differences of LaCoPO and NdCoPO from SmCoPO are due to the decrement of the interlayer separation and not due to the moments of the 4f electrons. The nuclear spin–lattice relaxation time (T1) in NdCoPO shows weak anisotropy at 300 K. Using the self-consistent renormalization (SCR) theory of itinerant ferromagnets, it is shown that in the ab plane, the spin fluctuations are three-dimensional ferromagnetic in nature. From SCR theory the important spin-fluctuation parameters (T0, TA, ) are evaluated. The similarities and dissimilarities of the NMR results in As and P based systems with different rare earths are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.