Abstract

The pressurization of reactant gases is one of the solutions for generating considerable power in a polymer electrolyte membrane fuel cell with a restricted size. Electrochemical phenomena, such as current density distribution and ohmic resistance distribution, were observed to validate the effects of operating pressure and temperature on cell performance. The test was conducted in galvanostatic mode, and an inhomogeneous current distribution was observed under a high-pressure condition, except at a high temperature. High-frequency resistance measurement was also conducted to observe local ohmic resistance. Result showed that high pressure and temperature reduced ohmic loss and improved overall cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call