Abstract

Nanopores could potentially be used to perform single molecule DNA sequencing at low cost and with high throughput1–4. Although single-base resolution and differentiation have been demonstrated with nanopores using ionic current measurements5–7, direct sequencing has not been achieved due to difficulties in recording very small (~pA) ionic current at a bandwidth consistent with fast translocation speeds1–3. Here we show that solid-state nanopores can be combined with silicon nanowire field-effect transistors (FETs) to create sensors in which detection is localised and self-aligned at the nanopore. Well-defined FET signals associated with DNA translocation are recorded when an ionic strength gradient is imposed across the nanopores. Measurements and modelling show that FET signals are generated by highly-localized changes in the electrical potential during DNA translocation and that the nanowire-nanopore sensors could enable large-scale integration with a high intrinsic bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.