Abstract

For high–Tc superconductor metal oxides (HTSC) it is shown that the dc resistivity and Hall effect temperature behaviour can be explained by the model of the paraelectric material close to the point of the Mott-Hubbard instability, in the ground state of which the current is carried by a liquid of boson-like pairs of carriers in upper and lower Hubbard bands. The Mott-Hubbard instability corresponds to the order-of-lattice-constant length of the mean free path and results in the temperature insensitivity of Drude conductivity. Nearly linear on T resistivity results from the Curie law via the local (acting) electric field. Fermion-like carriers, temperature excited over the energy of boson-like pair dissociation (pseudo gap), explain the temperature behaviour of Hall effect. Available data are compared with the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.