Abstract
The nature of non-crystalline materials causes the local potential energy of a cluster of atoms or molecules to vary significantly in space. Different configurations of an ensemble of atoms in a metallic glass lead therefore to a distribution of elastic constants which also changes in space. This is totally different to their crystalline counterparts, where a long-range order exists in space and therefore a much more unified elastic modulus is expected. Using atomic force acoustic microscopy, we present data which show that the local so-called indentation modulus M indeed exhibits a wide distribution on a scale below 10 nm in amorphous PdCuSi, with ΔM/M≈30%. About 10(4) atoms are probed in an individual measurement. Crystallized PdCuSi shows a variation that is 10-30 times smaller and which is determined by the resolution of the microscope and by the polycrystalline structure of the material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.