Abstract
Deheuvels proposed a rank test of independence based on a Cramér–von Mises functional of the empirical copula process. Using a general result on the asymptotic distribution of this process under sequences of contiguous alternatives, the local power curve of Deheuvels’ test is computed in the bivariate case and compared to that of competing procedures based on linear rank statistics. The Gil-Pelaez inversion formula is used to make additional comparisons in terms of a natural extension of Pitman's measure of asymptotic relative efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.