Abstract
In standard statistical data analysis, the effects of intervention or prevention efforts are evaluated in terms of variable relations. Results from application of regression-type methods suggest whether, overall, intervention is successful. In this article, we propose using configural frequency analysis (CFA) either in tandem with regression-type methods or by itself. CFA allows one to adopt a person-oriented perspective in which individuals are targeted that can be characterized by particular profiles. The questions asked in CFA concern these individuals instead of variables. In prevention research, one can ask whether, for particular profiles, the preventive measures are successful. In three real-world data examples, CFA is applied and compared to standard log-linear modeling. Examples consider non-randomized (observational) and randomized intervention settings. The results of these analyses suggest that person-oriented CFA and standard variable-oriented methods of analysis respond to different questions. We show that integrating person- and variable-oriented perspectives can help researchers obtain a fuller picture of intervention effectiveness. Extensions of the CFA approach are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Prevention science : the official journal of the Society for Prevention Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.