Abstract

The aim of this study was to investigate the direct influence of lung contusion on pulmonary surfactant in multiple trauma patients. Prospective, nonrandomized study. University hospital, trauma intensive care unit. Eighteen multiple trauma patients with unilateral lung contusions and Injury Severity Scores >19 were studied prospectively. Bronchoalveolar lavage was performed daily until either day 7 or extubation. Samples from the side of lung contusion (n = 62) and the contralateral, uninjured side (n = 62) were obtained at the same time in 14 patients. Total phospholipids, total phospholipid classes, and surfactant apoprotein A were quantified. Additionally, surfactant function was measured with a pulsating bubble surfactometer in four patients. All data are presented as mean +/- SEM. Statistical analyses were performed using programs of SPSS for Windows 6.1.3 (SPSS Inc., Chicago, IL) (Student's t-test; p < .05). Total phospholipids were significantly increased on the side of lung contusion (contusion side, 40+/-7 microg/mL; contralateral side, 21+/-3 microg/mL; p = .004). The percentage contents of phosphatidylcholine (contusion side, 87.1%+/-1.0%; contralateral side, 84.3%+/-1.0%; p = .04) and sphingomyelin (contusion side, 2.9%+/-0.3%; contralateral side, 1.9%+/-0.2%; p = .004) were significantly higher. In contrast, the percentage content of phosphatidylglycerol was significantly decreased (contusion side, 4.1%+/-0.1%; contralateral side, 6.9%+/-0.6%; p = .001). No alterations were found for the relative contents of phosphatidylethanolamine (contusion side, 2.4%+/-0.2%; contralateral side, 2.2%+/-0.2%; p = .47), phosphatidylinositol (contusion side, 3.5%+/-0.4%; contralateral side, 4.6%+/-0.5%; p = .06), and surfactant apoprotein A (contusion side, 7177+/-1404 ng/mL; contralateral side, 4513+/-787 ng/mL, p = .10). There was no statistical difference for minimal surface tension measured with the pulsating bubble surfactometer after 5 mins of oscillation (contusion side, 29.5+/-2.3 mN/m; contralateral side, 23.7+/-2.1 mN/m; p = .08). Direct damage of lung parenchyma by lung contusion alters the composition of surfactant. No additional changes in surfactant function were observed that would argue in favor of functional compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.