Abstract

A crustal tomographic image, from the surface down to 35 km depth beneath the Betic Cordillera (southern Spain), is obtained using data on local earthquakes recorded at stations from the National and Andalusian Seismic Networks. The velocity structure and the hypocentre locations are derived from the inversion of P first arrival times, using an iterative simultaneous inversion method. The reliability of the results is assessed using different control parameters. The inverted velocity field in the uppermost layers shows a significant lateral variability which reflects most of the large-scale geological features of the Betic Cordillera. Well determined local surface anomalies allow to constrain the location and geometry of the most prominent Neogene sedimentary basins. The upper crust is well resolved throughout the whole region, and is characterized by relatively high velocities in the Internal Betics and in the South Iberian Massif and lower velocities within the External Betics. A relatively well constrained event cluster displays a NNE–SSW trend, and outlines the contact zone between the Internal and the External domains. The middle and lower crustal levels show reliable results beneath the central part of the Betic Cordillera. High averaged velocities are obtained within the South Iberian and the Alboran domains, in contrast to a relatively low velocity anomaly which characterizes the boundary between them. These findings support the hypothesis of the lack of well differentiated crustal levels below the contact zone, while crustal layering is better defined beneath the Alboran and the Iberian domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call