Abstract

An experimental investigation of near-wall scale interactions in the presence of a deterministic forcing input is presented in this work. The external forcing input was generated by a wall-mounted piezoelectric (PZT) actuator, which directly introduces a dynamic perturbation into the near-wall cycle of turbulent boundary layer flow. The spectra of velocity fluctuations indicated that the fundamental forcing mode can be observed in all the perturbed cases and that the occurrence of high-order harmonics is dependent on the PZT perturbation amplitude. Under the strong forcing input, the fundamental forcing mode is influenced by large-scale structures through a high-degree amplitude modulation (AM) effect. More importantly, the phase-switching process was found for the high-order harmonics and small-scale turbulence, both of which are in phase with the forcing mode in and are switched to be out of phase in . It was demonstrated that the forcing mode rearranges both the harmonics and small-scale turbulence in the near-wall region, as evidenced by the AM effect and phase relationship. In addition, the near-wall scale rearrangements were confirmed by the skewness cross-term distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.