Abstract
Local distortions of the ideal periodic structure in crystals around impurity atoms play an important role in various physical properties of materials. The aim of this study was to investigate the static distortions around cadmium impurity atoms in a ${\text{SnCd}}_{0.0026}$ single crystal using atomic resolution neutron holography technique. The cadmium nucleus was used as an inside detector to measure the holographic interference pattern from which the three-dimensional (3D) atomic arrangement of tin nuclei around the cadmium impurities was reconstructed. Detailed analysis of the reconstructed image revealed the 3D static displacements of Sn atoms around the impurity. It was found that the crystal structure contracts around the cadmium impurity atom and the displacements tend to transform the crystal to the $\ensuremath{\alpha}$ phase. The local contraction of the lattice was used to explain the slower phase transformation to $\ensuremath{\alpha}$-Sn phase when Cd impurity atoms are present. The study shows the ability of neutron holography to measure 3D displacements around impurities which can be used, e.g., to understand the mechanisms that block the phase transformations in the presence of impurities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.