Abstract

Synchronised signal transduction between cells is crucial, since it assures fast and immutable information processing, which is vital for flawless functioning of living organisms. The question arises how to recognise the ability of a cell to be easily coupled with other cells. In the present paper, we investigate the system properties that determine best coupling abilities and assure the most efficient signal transduction between cells. A case study is done for intercellular calcium oscillations. For a particular diffusion-like coupled system of cellular oscillators, we determined the minimal gap-junctional permeability that is necessary for synchronisation of initially asynchronous oscillators. Our results show that dissipation is a crucial system property that determines the coupling ability of cellular oscillators. We found that low dissipation assures synchronisation of coupled cells already at very low gap-junctional permeability, whereas highly dissipative oscillators require much higher gap-junctional permeability in order to synchronise. The results are discussed in the sense of their biological importance for systems where the synchronous responses of cells were recognised to be indispensable for appropriate physiological functioning of the tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call